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Some Open Problems Concerning Orthogonal Polynomials on
Fractals and Related Questions

Gökalp Alpan a · Alexander Goncharov a

Abstract

We discuss several open problems related to analysis on fractals: estimates of the Green functions, the
growth rates of the Markov factors with respect to the extension property of compact sets, asymptotics
of orthogonal polynomials and the Parreau-Widom condition, Hausdorff measures and the Hausdorff
dimension of the equilibrium measure on generalized Julia sets.

1 Background and notation

1.1 Chebyshev and orthogonal polynomials

Let K ⊂ C be a compact set containing infinitely many points. We use ‖ · ‖L∞(K) to denote the sup-norm on K, Mn is the set
of all monic polynomials of degree n. The polynomial Tn,K that minimizes ‖Qn‖L∞(K) for Qn ∈Mn is called the n-th Chebyshev
polynomial on K .

Assume that the logarithmic capacity Cap(K) is positive. We define the n-th Widom factor for K by

Wn(K) := ‖Tn,K‖L∞(K)/Cap(K)n.

In what follows we consider probability Borel measures µ with non-polar compact support supp(µ) in C. The n-th monic
orthogonal polynomial Pn(z;µ) = zn + . . . associated with µ has the property

‖Pn(·;µ)‖2
L2(µ) = inf

Qn∈Mn

∫

|Qn(z)|2 dµ(z),

where ‖ · ‖L2(µ) is the norm in L2(µ). Then the n-th Widom-Hilbert factor for µ is

W 2
n (µ) := ‖Pn(·;µ)‖L2(µ)/(Cap(supp(µ)))n.

If supp(µ) ⊂ R then a three-term recurrence relation

x Pn(x;µ) = Pn+1(x;µ) + bn+1Pn(x;µ) + a2
n Pn−1(x;µ)

is valid for n ∈ N0 := N ∪ {0}. The initial conditions P−1(x;µ) ≡ 0 and P0(x;µ) ≡ 1 generate two bounded sequences
(an)∞n=1, (bn)∞n=1 of recurrence coefficients associated with µ. Here, an > 0, bn ∈ R for n ∈ N and

‖Pn(·;µ)‖L2(µ) = a1 · · · an.

A bounded two sided C-valued sequence (dn)∞n=−∞ is called almost periodic if the set {(dn+k)∞n=−∞ : k ∈ Z} is precompact in
l∞(Z). A one sided sequence (cn)∞n=1 is called almost periodic if it is the restriction of a two sided almost periodic sequence to N.
A sequence (en)∞n=1 is called asymptotically almost periodic if there is an almost periodic sequence (e′n)

∞
n=1 such that |en − e′n| → 0

as n→ 0.
The class of Parreau-Widom sets plays a special role in the recent theory of orthogonal and Chebyshev polynomials. Let K be

a non-polar compact set and gC\K denote the Green function for C \ K with a pole at infinity. Suppose K is regular with respect to
the Dirichlet problem, so the set C of critical points of gC\K is at most countable (see e.g. Chapter 2 in [9]). Then K is said to be a
Parreau-Widom set if

∑

c∈C gC\K(c)<∞. Parreau-Widom sets on R have positive Lebesgue measure. For different aspects of such
sets, see [8, 15, 23].

The class of regular measures in the sense of Stahl-Totik can be defined by the following condition

lim
n→∞

Wn(µ)
1/n = 1.

For a measure µ supported on R we use the Lebesgue decomposition of µ with respect to the Lebesgue measure:

dµ(x) = f (x)d x + dµs(x).
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Following [9], we define the Szegő class Sz(K) of measures on a given Parreau-Widom set K ⊂ R. Let µK be the equilibrium
measure on K . By ess supp(·) we denote the essential support of the measure, that is the set of accumulation points of the support.
We have Cap(supp(µ)) = Cap(ess supp(µ)), see Section 1 of [21]. A measure µ is in the Szegő class of K if
(i) ess supp(µ) = K .
(ii)
∫

K
log f (x) dµK(x)> −∞. (Szegő condition)

(iii) the isolated points {xn} of supp(µ) satisfy
∑

n gC\K(xn)<∞.

By Theorem 2 in [9] and its proof, (ii) can be replaced by one of the following conditions:
(ii′) lim supn→∞W 2

n (µ)> 0. (Widom condition)
(ii′′) lim infn→∞W 2

n (µ)> 0. (Widom condition 2)
One can show that any µ ∈ Sz(K) is regular in the sense of Stahl-Totik.

1.2 Generalized Julia sets and K(γ)
Let ( fn)∞n=1 be a sequence of rational functions with deg fn ≥ 2 in C and Fn := fn ◦ fn−1 ◦ . . . ◦ f1. The domain of normality for
(Fn)∞n=1 in the sense of Montel is called the Fatou set for ( fn). The complement of the Fatou set in C is called the Julia set for ( fn).
We denote them by F( fn) and J( fn) respectively. These sets were considered first in [11]. In particular, if fn = f for some fixed
rational function f for all n then F( f ) and J( f ) are used instead. To distinguish the last case, the word autonomous is used in the
literature.

Suppose fn(z) =
∑dn

j=0 an, j · z j where dn ≥ 2 and an,dn
6= 0 for all n ∈ N. Following [?], we say that ( fn) is a regular polynomial

sequence (write ( fn) ∈R) if positive constants A1, A2, A3 exist such that for all n ∈ N we have the following three conditions:
|an,dn

| ≥ A1
|an, j | ≤ A2|an,dn

| for j = 0,1, . . . , dn − 1
log |an,dn

| ≤ A3 · dn
For such polynomial sequences, by [?], J( fn) is a regular compact set in C, so Cap(J( fn)) is positive. In addition, J( fn) is the boundary
of

A( fn)(∞) := {z ∈ C : Fn(z) goes locally uniformly to∞}.
The following construction is from [12]. Let γ := (γk)∞k=1 be a sequence provided that 0< γk < 1/4 holds for all k ∈ N and

γ0 := 1. Let f1(z) = 2z(z − 1)/γ1 + 1 and fn(z) =
1

2γn
(z2 − 1) + 1 for n> 1. Then K(γ) := ∩∞s=1F−1

s ([−1, 1]) is a Cantor set on R.
Furthermore, F−1

s ([−1,1]) ⊂ F−1
t ([−1, 1]) ⊂ [0, 1] whenever s > t.

Also we use an expanded version of this set. For a sequence γ as above, let fn(z) =
1

2γn
(z2 − 1) + 1 for n ∈ N. Then

K1(γ) := ∩∞s=1F−1
s ([−1, 1]) ⊂ [−1, 1] and F−1

s ([−1, 1]) ⊂ F−1
t ([−1, 1]) ⊂ [−1, 1] provided that s > t. If there is a c with 0< c < γk

for all k then ( fn) ∈R and J( fn) = K1(γ), see [5]. If γ1 = γk for all k ∈ N then K1(γ) is an autonomous polynomial Julia set.

1.3 Hausdorff measure

A function h : R+→ R+ is called a dimension function if it is increasing, continuous and h(0) = 0. Given a set E ⊂ C, its h-Hausdorff
measure is defined as

Λh(E) = lim
δ→0

inf
¦∑

h(r j) : E ⊂
⋃

B(z j , r j) with r j ≤ δ
©

,

where B(z, r) is the open ball of radius r centered at z. For a dimension function h, a set K ⊂ C is an h-set if 0< Λh(K)<∞. To
denote the Hausdorff measure for h(t) = tα, Λα is used. Hausdorff dimension of K is defined as HD(K) = inf{α≥ 0 : Λα(K) = 0}.

2 Smoothness of Green functions and Markov Factors
The next set of problems is concerned with the smoothness properties of the Green function gC\K near compact set K and related
questions. We suppose that K is regular with respect to the Dirichlet problem, so the function gC\K is continuous throughout C.
The next problem was posed in [12].

Problem 1. Given modulus of continuityω, find a compact set K such that the modulus of continuityω(gC\K , ·) is similar toω.

Here, one can consider similarity either as coincidence of the values of moduli of continuity on some null sequence or in the
sense of weak equivalence: ∃C1, C2 such that

C1ω(δ)≤ω(gC\K ,δ)≤ C2ω(δ)

for sufficiently small positive δ.
We guess that a set K(γ) from [12] is a candidate for the desired K provided a suitable choice of the parameters. We recall

that, for many moduli of continuity, the corresponding Green functions were given in [12], whereas the characterization of
optimal smoothness for gC\K(γ) is presented in [[5], Th.6.3].

A stronger version of the above problem concerns with the pointwise estimation of the Green function:

Problem 2. Given modulus of continuity ω, find a compact set K such that

C1ω(δ)≤ gC\K(z)≤ C2ω(δ)

Dolomites Research Notes on Approximation ISSN 2035-6803



Alpan · Goncharov 3

for δ = dist(z, K)≤ δ0, where C1, C1 and δ0 do not depend on z.

In the most important case we get a problem of “two-sided Hölder" Green function, which was posed by A. Volberg on his
seminar (quoted with permission):

Problem 3. Find a compact set K on the line such that for some α > 0 and constants C1, C2, if δ = dist(z, K) is small enough
then

C1 δ
α ≤ gC\K(z)≤ C2 δ

α. (1)

Clearly, a closed analytic curve gives a solution for sets on the plane.
If K ⊂ R satisfies (1), then K is of Cantor-type. Indeed, if interior of K (with respect to R) is not empty, let (a, b) ⊂ K , then gC\K

has Lip 1 behavior near the point (a+b)/2. On the other hand, near endpoints of K the function gC\K cannot be better than Lip 1/2.

By the Bernstein-Walsh inequality, smoothness properties of the Green functions are closely related with a character of
maximal growth of polynomials outside the corresponding compact sets, which, in turn, allows to evaluate the Markov factors for
the sets. Recall that, for a fixed n ∈ N and (infinite) compact set K, the n−th Markov factor Mn(K) is the norm of operator of
differentiation in the space of holomorphic polynomials Pn with the uniform norm on K . In particular, the Hölder smoothness
(the right inequality in (1)) implies the Markov property of the set K (a polynomial growth rate of Mn(K)). The problem of
inverse implication (see e.g [20]) has attracted attention of many researches.

By W. Pleśniak [20], any Markov set K ⊂ Rd has the extension property EP, which means that there exists a continuous linear
extension operator from the space of Whitney functions E(K) to the space of infinitely differentiable functions on Rd . We guess
that there is some extremal growth rate of Mn which implies the lack of EP. Recently it was shown in [14] that there is no
complete characterization of EP in terms of growth rate of the Markov factors. Namely, two sets were presented, K1 with EP and
K2 without it, such that Mn(K1) grows essentially faster than Mn(K2) as n→∞. Thus there exists non-empty zone of uncertainty
where the growth rate of Mn(K) is not related with EP of the set K .

Problem 4. Characterize the growth rates of the Markov factors that define the boundaries of the zone of uncertainty for the
extension property.

3 Orthogonal polynomials
One of the most interesting problems concerning orthogonal polynomials on Cantor sets on R is the character of periodicity
of recurrence coefficients. It was conjectured in p.123 of [7] that if f is a non-linear polynomial such that J( f ) is a totally
disconnected subset of R then the recurrence coefficients for µJ( f ) are almost periodic. This is still an open problem. In [6], the
authors conjectured that the recurrence coefficients for µK(γ) are asymptotically almost periodic for any γ. It may be hoped that a
more general and slightly weaker version of Bellissard’s conjecture can be valid.

Problem 5. Let ( fn) be a regular polynomial sequence such that J( fn) is a Cantor-type subset of the real line. Prove that the
recurrence coefficients for µJ( fn) are asymptotically almost periodic.

For a measure µ which is supported on R, let Zn(µ) := {x : Pn(x;µ) = 0}. We define Un(µ) by

Un(µ) := inf
x ,x ′∈Zn(µ)

x 6=x′

|x − x ′|.

In [17] Krüger and Simon gave a lower bound for Un(µ) depending on n where µ is the Cantor-Lebesgue measure of the
(translated and scaled) Cantor ternary set. In [16], it was shown that Markov’s inequality and spacing of the zeros of orthogonal
polynomials are somewhat related.

Let γ = (γk)∞k=1 and n ∈ N with n > 1 be given and define δk = γ0 · · ·γk for all k ∈ N0. Let s be the integer satisfying
2s−1 ≤ n< 2s. By [2],

δs+2 ≤ Un(µK(γ))≤
π2

4
·δs−2

holds. In particular, if there is a number c such that 0< c < γk < 1/4 holds for all k ∈ N then, by [2], we have

c2 ·δs ≤ Un(µK(γ))≤
π2

4c2
·δs. (2)

By [13], at least for small sets K(γ), we have M2s (K(γ))∼ 2/δs, where the symbol ∼ means the strong equivalence.

Problem 6. Let K be a non-polar compact subset of R. Is there a general relation between the zero spacing of orthogonal
polynomials for µK and smoothness of gC\K? Is there a relation between the zero spacing of µK and the Markov factors?

As mentioned in section 1, the Szegő condition and the Widom condition are equivalent for Parreau-Widom sets. Let
K be a Parreau-Widom set. Let µ be a measure such that ess supp(µ) = K and the isolated points {xn} of supp(µ) satisfy
∑

n gC\K(xn)<∞. Then, as it is discussed in Section 6 of [4], the Szegő condition is equivalent to the condition
∫

K

log(dµ/dµK) dµK(x)> −∞. (3)
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This condition is also equivalent to the Widom condition under these assumptions.
It was shown in [1] that infn∈NWn(µK)≥ 1 for non-polar compact K ⊂ R. Thus the Szegő condition in the above form (3) and

the Widom condition are related on arbitrary non-polar sets.

Problem 7. Let K be a non-polar compact subset of R which is regular with respect to the Dirichlet problem. Let µ be a
measure such that ess supp(µ) = K . Assume that the isolated points {xn} of supp(µ) satisfy

∑

n gC\K(xn)<∞. If the condition
(3) is valid for µ, is it necessarily true that the Widom condition or the Widom condition 2 holds? Conversely, does the Widom
condition imply (3)?

It was proved in [10] that if K is a Parreau-Widom set which is a subset of R then (Wn(K))∞n=1 is bounded above. On the other
hand, (Wn(K))∞n=1 is unbounded for some Cantor-type sets, see e.g. [13].

Problem 8. Is it possible to find a regular non-polar compact subset K of R which is not Parreau-Widom but (Wn(K))∞n=1 is
bounded? If K has zero Lebesgue measure then is it true that (Wn(K))∞n=1 is unbounded? We can ask the same problems if we
replace (Wn(K))∞n=1 by (W 2

n (µK))∞n=1 above.

Let TN be a real polynomial of degree N with N ≥ 2 such that it has N real and simple zeros x1 < · · ·< xn and N − 1 critical
points y1 < · · ·< yn−1 with |TN (yi)| ≥ 1 for each i ∈ {1, . . . , N − 1}. We call such a polynomial admissible. If K = T−1

N ([−1, 1]) for
an admissible polynomial TN then K is called a T -set. The following result is well known, see e.g. [22].

Theorem 3.1. Let K = ∪n
j=1[α j ,β j] be a union of n disjoint intervals such that α1 is the leftmost end point. Then K is a T-set if and

only if µK([α1, c]) is in Q for all c ∈ R \ K.

For K(γ), it is known that µK(γ)([0, c]) ∈Q if c ∈ R \ K(γ), see Section 4 in [2].

Problem 9. Let K be a regular non-polar compact subset of R and α be the leftmost end point of K . Let µK([α, c]) ∈Q for all
c ∈ R \ K . What can we say about K? Is it necessarily a polynomial generalized Julia set? Does this imply that there is a sequence
of admissible polynomials ( fn)∞n=1 such that (F−1

n [−1,1])∞n=1 is a decreasing sequence of sets such that K = ∩∞n=1F−1
n [−1,1]?

4 Hausdorff measures
It is valid for a wide class of Cantor sets that the equilibrium measure and the corresponding Hausdorff measure on this set are
mutually singular, see e.g. [18].

Let γ = (γk)∞k=1 with 0 < γk < 1/32 satisfy
∑∞

k=1 γk <∞. This implies that K(γ) has Hausdorff dimension 0. In [3], the
authors constructed a dimension function hγ that makes K(γ) an h-set. Provided also that K(γ) is not polar it was shown that
there is a C > 0 such that for any Borel set B,

C−1 ·µK(γ)(B)< Λhγ(B)< C ·µK(γ)(B)

and in particular the equilibrium measure and Λhγ restricted to K(γ) are mutually absolutely continuous. In [14], it was shown
that indeed these two measures coincide. To the best of our knowledge, this is the first example of a subset of R such that the
equilibrium measure is a Hausdorff measure restricted to the set.

Problem 10. Let K be a non-polar compact subset of R such that µK is equal to a Hausdorff measure restricted to K. Is it
necessarily true that the Hausdorff dimension of K is 0?

Hausdorff dimension of a probability Borel measure µ supported on C is defined by dim(µ) := inf{HD(K) : µ(K) = 1} where
HD(·) denotes Hausdorff dimension of the given set. For polynomial Julia sets which are totally disconnected there is a formula
for dim(µJ( f )), see e.g.p. 23 in [18] and p.176-177 in [20].

Problem 11. Is it possible to find simple formulas for dim
�

µJ( fn)

�

where ( fn) is a regular polynomial sequence?
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